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1 Introduction

For the mini-project within the Robot Vision the task is to program an industrial robot cell
equipped with a camera to pickup LEGO DUPLOR© bricks and build Simpson figures with these.
The five figures from the Simpson family will consist of either two or three stacked 2x2 DUPLO
bricks according to the color schemes listed below, indicating the color from bottom to top.

• Homer: Blue, White, Yellow

• Bart: Blue, Orange, Yellow

• Maggie: Blue, Yellow

• Lisa: Yellow, Red, Yellow

• Marge: Green, Yellow, Blue

Figure 1.1: Example of builded Simpson figures

The DUPLO bricks are located randomly (but not overlapping) on a table next to the robot. A
camera located above the table is mounted such that all bricks to be used are within the view of
the camera. This allows the camera to be calibrated and used with the robot to identify the
color, location and orientation of all the bricks.

A customer can order any set of figures of which the robot should be able to automatically pick
up and stack the required bricks in an optimal way. The solution should be be programmed in
MATLAB and interface to the chosen robot over either USB or Ethernet.
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Chapter 1. Introduction

Figure 1.2: Robot cell configuration with camera and station area

In this mini-project report the analysis, design and implementation of the above mentioned
solution is described.

In Chapter 2 a short analysis of the problem is given and the Universal Robots UR5 robot cell is
chosen. The analysis is concluded in a block diagram showing the structure of the solution to be
implemented.

In Chapter 3 the necessary image processing steps to extract the brick colors, locations and orien-
tations are described, including normalization, thresholding, morphological operations and BLOB
analysis. An algorithmic approach is used to describe how to implement the processing steps in
MATLAB without usage of any existing toolboxes. Further optimizations of the proposed so-
lution can be carried out by usage of existing toolboxes, but this is outside the scope of this report.

In Chapter 4 the interface and control of the chosen Universal Robots UR5 robot through
MATLAB is described. Initially the programming of the robot is investigated and the necessary
transformation matrices are presented. The resulting MATLAB integration is simulated on a
virtual machine running the PolyScope teach pendent operating system [8].

In Chapter 5 the image processing is combined with the MATLAB control interface to the
robot involving calibration of the detected camera-based object positions and the real-world
positions. Finally the integration includes an analysis and design of the stacking algorithm which
is implemented and tested on the robot.
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2 Analysis and planning

In this chapter a description of the chosen robot arm, gripper, camera and robot cell layout is
given. This results in a set of frames which are used for transformations in later chapters.
Based on the chosen architecture, layout and the goal of picking up and stacking LEGO DUPLO
bricks, a block diagram is given in the end showing the overall structure of the implemented
solution.

2.1 Choice of robot
Picking up a LEGO DUPLO brick requires a robot that is capable of reaching a given 2D
location on a table and adjust the orientation of the gripper to match the orientation of the
brick. Furthermore the robot should be capable of picking up and stacking the bricks, why a
z-dimension is necessary as well. This puts up a requirement of at least 4 degrees of freedom in
the robot. If the table is not completely planar a 6-DOF robot would allow any position to be
reached in space with any orientation, hence capable of picking up the LEGO brick from any
surface.

The robots available in the M-Tech laboratory at Aalborg University [9] for use in this mini-project
are all 6-DOF robots and includes robots from KUKA, FANUC, Adept and Universal Robots.

Based on the fact that the Universal Robots is a well-known danish invention used worldwide
and highly expanding, it is chosen to work with this type of robot to get experience with their
environment for possible use in future career opportunities. Furthermore Universal Robots have
a great benefit of being classified as collaborable robots which means they can work together with
humans without the need of big fences and closed environments. This will make the development
easier as there will be an easy access to the robot and its’ working environment, which would be
easily adjustable as the robot is not fixed to a specific position in a cage. The available robot
from Universal Robots is a UR5 which is chosen for this project.

2.2 Gripper and camera
The chosen UR5 robot came equipped with a two-finger servo-controlled gripper with a grip-
ping force of a few millinewton. With this gripper it was decided that bricks should be picked
up with the gripper fingers pointing downwards, hence the gripper tool frame turned upside down.

It is decided to install the camera on the robot arm, as shown in Figure 2.1, as it was not possible
to locate any holders for the camera that would allow the camera to be installed in sufficient
height above the table without colliding with the robot. By installing the camera on the robot,
collisions are avoided completely and furthermore the location and orientation of the camera
frame can be exactly known as long as just a mapping from the tool frame of the robot to the
camera frame can be determined initially. The determination of this mapping together with the
determination of the transformation from camera pixels to camera frame coordinates in meters
is described in Section 5.1.
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Chapter 2. Analysis and planning 2.3. Robot cell layout

Figure 2.1: Camera mounted on gripper with marked tool center point

2.3 Robot cell layout
Both knowing the chosen 6-DOF robot arm, the gripper type and how the camera is mounted
to the gripper allows the robot cell layout to be designed. From the design the following set of
frames are placed:

{B} : Robot base frame
{T} : Robot tool frame
{C} : Camera frame
{S} : Station frame with bricks
{S} : Station frame for placement

(a) Frame identifiers

(b) Pictured frames on the robot cell layout
Figure 2.2: Robot cell layout with chosen frames

It is chosen to combine the two station frames into one frame indicating the location of the
table surface from which the bricks are supposed to be picked up and on which the stacked fig-
ures will be placed. The actual layout of the robot with the frames pictured is shown in Figure 2.2.

Frames are used to describe poses which consists of both a translational and rotational part.
These parts can be described in different ways, either separately or combined. The translation
are given in meters according to the local frame axes, X,Y, Z. The rotation can be given as
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2.4. Block diagram Chapter 2. Analysis and planning

Roll, Pitch, Yaw angles, as a quaternion or a rotation matrix. The translational and rotational
part can be combined by using the SO(4) description (4-dimensional Euclidean space), being
a homogeneous 4x4 matrix representation of the pose. The matrix includes the 3x3 rotation
matrix and the 3-dimensional translation vector.

A transformation matrix, A
BP, describes the transformation from frame {B} to frame {A} with

a translation, T3x1, corresponding to the origo of frame {B} in frame {A} and rotation, R3x3,
corresponding to the rotation of frame {A} relative to frame {B}.

A
BP =

[
R3x3 T3x1
01x3 1

]
(2.1)

Such a transformation is capable of transforming a vector given in frame {B} into a vector given
in {A}. A transformation is applied by multiplying the vector given in frame {B} with the SO(4)
transformation matrix. Notice the use of homogeneous vectors.[

AT
1

]
= A

BP
[

BT
1

]
(2.2)

It is decided to use the SO(4) representation to describe all frames and transformations throughout
the report.

2.4 Block diagram
Figure 2.3 shows the proposed structure of the system.

Figure 2.3: Block diagram of proposed solution structure

First an image is acquired from a
camera. Then the image is pro-
cessed in an image processing part,
by which the location and rotation
of all bricks in the image are ob-
tained. These positions and rota-
tions is then processed further to
convert them into the robot base
frame. The positions and rotations
obtained from that is then past to
a stacker algorithm that chooses
which bricks to stack on top of each
other, and in which order. These
decisions is then past on to the
robot controller script, to make the
robot stack the bricks.
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3 Image processing

The goal of the image processing part of the system is to locate the different bricks in an image.
The output of the image processing part should be an XY-coordinate for the centre of the bricks
given in the image coordinate system, and a rotation of the bricks. Furthermore the information
of the bricks should be sorted by colours.
It has been chosen to divide the image processing into the following steps:

1. Convert the raw RGB image to an RGI image to separate colour information from intensity
information

2. Perform background subtraction to remove the static background
3. Perform colour thresholding for each of the different colours of bricks on the RGI image to

segment the image and obtain a binary image for each of the brick colours.
4. Perform morphology (neighbourhood processing) to remove noise from the binary images
5. Perform BLOB-extraction on the binary images to separate different bricks of the same

colours and remove any noise left.
6. Perform feature extraction to extract information about the different bricks from the

BLOBs.

The different steps is described in the following sections, and the image processing is illustrated
by the use of the following picture taken while performing the test of the system, as shown in
the attached video named ’Universal Robots vision-based LEGO DUPLO stacker.mp4’.

Figure 3.1: Raw RGB image of resolution 1920× 1080

3.1 RGB to RGI Conversion
Calculations and functionalities described in this section is is implemented in the function
RGB2RGI2(rgbImage).
Before the RGB to RGI conversion is performed all pixels in the RGB image having a value of
255 in any of the colour channels is put to (0,0,0). This is because there is a risk that one of the
colour channels of this pixel was saturated in the image acquisition process resulting in a value
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3.1. RGB to RGI Conversion Chapter 3. Image processing

of 255. This could lead to incorrect interpretation of the colour later in the image processing,
and should thus be discarded. An RGB pixel with values of (255, 250, 250) would be interpreted
as white, but could have real values of (10000, 250, 250) and should thus be interpreted as a red
colour. Since it is impossible to know the actual value of a saturated pixel, it is better to discard
those pixels. Therefore such pixels are put to (0,0,0).

Figure 3.2: Colours repre-
sented in the RGB space [3]

Figure 3.3: The plane in
the RGB space that the nor-
malized colours span [3]

Figure 3.4: The chromatic-
ity plane [3]

In the RGB colour space all colours can be described as vectors with lengths limited by a box, as
shown in Figure 3.2. As it is illustrated in Figure 3.2 vectors pointing in the same direction is just
different shades of the same colour, with only the illumination being different. By normalizing
the vectors describing different colours, new vectors are obtained that all will lie in the triangular
plane whose corner points are defined as (0, 0, 1), (0, 1, 0) and (1, 0, 0) as shown in Figure 3.3.
Due to the normalization rnorm + gnorm + bnorm = 1, only two of the values are needed to fully
describe a normalized colour. If rnorm and gnorm is chosen then the triangle in Figure 3.3 can be
represented by the triangle in Figure 3.4 called the chromaticity plane. These normalized colours
can be seen as "pure" colours that is not influenced by illumination.
The colour description can be completed with the intensity/illumination. The RGB to RGI
conversion is performed with pixel-wise calculation given in (3.1).

(r, g, I) =
(

r

r + g + b
,

g

r + g + b
,
r + g + b

3

)
(3.1)

In theory this RGI representation should allow colour thresholding on any image independent
of the illumination level and light intensity. As an example the normalized RGB description of
Figure 3.1 is shown in Figure 3.5

Figure 3.5: The image shown in Figure 3.1 converted to a normalized RGB image. The rnorm
and gnorm channels are calculated like in (3.1), while the bnorm channel is only calculated for
visualization purposes utilizing the fact that rnorm + gnorm + bnorm = 1
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Chapter 3. Image processing 3.2. Background Subtraction

3.2 Background Subtraction
Calculations and functionalities described in this section is implemented in the function Back-
groundSubtraction(rgiImage, BG_threshold).
To be able to perform a background subtraction an image of the table is taken before any bricks is
placed. This background RGB image is then converted into the RGI representation as described
in Section 3.1. The RGI image of the background is denoted as BRGI .
To perform the background subtraction the pixel-wise operation shown in (3.2) is applied on the
individual r-, g- and I-channel within the RGI image of the table with bricks, IRGI .

F (x, y) = IRGI (x, y)−BRGI (x, y) (3.2)

Based on Fr (x, y), Fg (x, y) and Fi (x, y), being the resulting channels of the RGI image after
subtraction, it is decided if a pixel in IRGI belongs to the background or not. This is done by
comparing each entry in Fr (x, y), Fg (x, y) and Fi (x, y) to a threshold, BGthreshold. If just one
of the thresholds, |Fr (x, y)| > BGthreshold, |Fg (x, y)| > BGthreshold or |Fi (x, y)| > BGthreshold,
is true, then the corresponding pixel in IRGI is kept as a non-background pixel. Otherwise the
corresponding pixel in IRGI is put to (0,0,0) to mark the pixel as background.
Performing this background subtraction on the image shown in Figure 3.5 results in the image
shown in Figure 3.6

Figure 3.6: The normalized RGB image with removed background.

3.3 Colour Thresholding
Calculations and functionalities described in this section is implemented in the function col-
orThresholding(rgiImage, config). This function is called for the different colours of bricks
separately. Each of the colours of bricks have their own config struct, that among other things
defines maximum and minimum threshold values for the rnorm and gnorm channels, and a minimum
threshold value for the i channel in the RGI image. The acquisition of threshold values for the
rnorm and gnorm channels is described in Section 3.3.1.
Before the colour thresholding is performed on the RGI image, the intensity level of each pixel is
checked. If a pixel has too low intensity it is put to 0 in the binary output image. This is done
because it is hard to distinguish colours when the intensity is low and thus it is better to ignore
such pixels. In practice this thresholding on the intensity is performed by comparing each pixels
in the I-channel of the RGI image with the minimum threshold value for the intensity, defined in
the config struct.
After performing the intensity thresholding, a thresholding is performed on the rnorm and gnorm
channels. In practice this is performed by comparing each pixels in the rnorm and gnorm channel
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3.4. Morphology Chapter 3. Image processing

of the RGI image with the upper and lower threshold values of the specific colour. If both the
rnorm and gnorm channel satisfies the threshold boundaries the corresponding pixel is put to 1 in
the binary output image to mark it as a brick pixel with the given colour. Otherwise it is put to
0.

Figure 3.7: Binary image resulting from performing orange colour thresholding on the RGI
image shown in Figure 3.6

An example of the binary image resulting from colour thresholding on the RGI image shown in
Figure 3.6 with the thresholds defined for the orange brick is shown in Figure 3.7.

3.3.1 Colour Threshold analysis
Calculations and functionalities described in this subsection is implemented in the script thresh-
oldAnalysis.m
To define threshold values for the rnorm and gnorm channels for the different colours of bricks the
following is done.

• An RGB image is taken with different coloured bricks on the table.

• The RGB image is converted into RGI representation.

• For each of the different colours of bricks, a region of the RGI image containing that colour
is cropped out of the RGI image. This results in 6 small images. One for each of the brick
colours being red, green, blue, yellow, white and orange.

• On each of the small images the 5% and 95% percentile is calculated for both the rnorm
and gnorm channels.

• 5% and 95% percentiles calculated for each of the 6 small images are used as the lower
and upper threshold values for the respective brick colours.

3.4 Morphology
Calculations and functionalities described in this section is implemented in the function re-
moveNoise(binaryImage, config).
As it can be seen in Figure 3.7 not only actual brick pixels are present within the binary image
after colour and intensity thresholding. The binary image also contain some noise. Furthermore
there are holes in the interior of some of the bricks, which is inconvenient e.g. when the centre of
mass has to be calculated later as part of the feature extraction.
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Chapter 3. Image processing 3.5. BLOB analysis

To remove this noise from the image, two consecutive compound operations are performed. First
a closing operation is performed to fill holes in the interior of the bricks. Then an opening
operation is performed to remove noise. As illustrated in Figure 3.8 a closing compound operation
consist of a dilation followed by an erosion operation, where an opening compound operation
consist of an erosion followed by a dilation operation.

Figure 3.8: Illustration of the operations performed in the morphological process
To perform a dilation operation a structuring element (kernel) is defined. For each pixel in the
picture the origin of this structuring element is placed on top. When calculating the output pixel
the origin of the structuring element defines the output pixel location. For each of the 1’s in
the structuring element it is checked if the corresponding pixel in the input image (below the
structuring element) is equal to a 1 as well. If this is true for just one of the pixels, then the
output pixel is put to a 1. Otherwise it is put to 0. This operation performed for a single pixel is
called a Hit operation. An erosion operation is performed in a similar way, except that for the
output pixel to be 1, all pixels in the input image covered by a 1 in the structuring element, has
to be 1 as well. This operation performed for a single pixel is called a Fit operation.
For this project it is chosen to use box-shaped structuring elements since this tend to preserve
sharp edges which a LEGO dublo brick has, and because it is important to preserve the correct
form of the brick for the feature extraction.

Figure 3.9: Result of performing morphology on Figure 3.7 (binary image of orange bricks)
using a 10× 10 closing structuring element and 5× 5 opening structuring element

The result after performing morphology on the binary image of the orange bricks, resulting from
the colour thresholding described in Section 3.3, is shown in Figure 3.9.

3.5 BLOB analysis
Calculations and functionalities described in this section is implemented in the function blob-
Analysis(binaryImage, config). The goal of the BLOB analysis in this project is to locate
and determine the position of the different bricks in the image and determine their rotation.
Before this can be done, the binary images resulting from the morphology described in Section 3.4
has to be converted into a format where all the pixels, which constitute a single brick, is classified
and grouped such that they can easily be recognized and distinguished. To do so the recursive
grass-fire algorithm can be used. After running the recursive grass-fire algorithm a BLOB is
considered to be a brick if its mass is above a certain threshold. If a BLOB is considered a brick
then the centre and rotation is calculated. The process is described in further details below.

10 / 24



3.5. BLOB analysis Chapter 3. Image processing

3.5.1 Recursive grass-fire algorithm
To connect the pixels that constitutes a brick we have chosen to use the recursive grass-fire
algorithm with 4-connectivity. The 4-connectivity is chosen since it is faster than 8-connectivity.
Furthermore it is assumed that after morphology has been performed on the binary images
the pixels constituting one brick will be closely connected, and thus 8-connectivity has no
advantages compared to 4-connectivity. The recursive grass-fire algorithm with 4-connectivity is
in this project implemented in the function BLOB_recursive(n, m, obj). The output of this
algorithm is a new image where each pixel has a number according to the BLOB it belongs to.
Pixels not belonging to any BLOB has a value of 0, where pixels belonging to BLOB 9 has a
value of 9 and so on.

3.5.2 Centre of Bricks
It has been chosen to use the centre of mass as a measure of the centre position of the bricks.
The centre of the bounding box of a BLOB could have been used as an estimate of the centre
position, though such an estimate is vulnerable to noise pixels in the boundary of a BLOB. That
is a single pixel could potentially move the centre of the bounding box a lot. Thus it has been
chosen to use the centre of mass since this is not vulnerable to single noise pixels. The centre of
mass is calculated as shown in (3.3).

xm = 1
N

∑
i∈obj

xi ym = 1
N

∑
i∈obj

yi (3.3)

This calculation is implemented in the function find_center_of_mass(obj, image), where
image is the output image of the grass-fire algorithm, and obj is the identifier of the object that
the centre of mass should be calculated for.

3.5.3 Rotation
After determining the centre of a brick the only thing left is to determine the rotation of
the brick. Finding the rotation of a brick is implemented in the function find_rotation2(j,
BLOB_output_img, Center_of_mass), where j is an identifier of the brick and
BLOB_output_img is the output image of the grass-fire function. The method of finding the
rotation of a brick can be summarized to:

Figure 3.10: Corner-based determination of the rotation using vectors
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Chapter 3. Image processing 3.5. BLOB analysis

• Calculate the distance from each pixels constituting a BLOB to the centre of mass of the
BLOB.

• Find the pixels in each quadrant being furthest apart from the centre of the BLOB (see
Figure 3.10) within a coordinate system whose origin is in the centre of the BLOB.

– Here we utilize the fact that bricks seen by the camera is square, and thus the pixels
furthest away from the centre in each quadrant must be the corners of the brick.

• Define the 4 vectors, vq,1,vq,2,vq,3 and vq,4, going from the centre of the BLOB to the pixel
in each quadrant being furthest away from the centre.

• Calculate the angles v1, v2, v3 and v4 as in (3.4).

• If noise is present in the image, then v1, v2, v3 and v4 will not be exactly the same, and
thus the rotation of the BLOB is calculated as the mean of the angles minus 45◦, as a
horizontal brick should correspond to 0◦.

v1 = tan−1
(
−vq,1,y

vq,1,x

)
v3 = tan−1

(
−vq,3,y

vq,3,x

)
v2 = tan−1

(
vq,2,x

vq,2,y

)
v4 = tan−1

(
vq,4,x

vq,4,y

) (3.4)

Furthermore in the case that a brick is angled close to 45 degrees (approximately between 40◦
and 50◦), there is a risk that there will be two long vectors in the same quadrants, hence making
it seem like there is two corners in one quadrant. As there is no control of which of the lengths
will be used, one angle might yield a completely different angle than the others, which due to the
mean will result in an incorrect estimate of the rotation.
To counteract this, an if statement is included that checks whether just two of the angles v1, v2,
v3 and v4 is higher than 40◦. If so the rotation of the brick is put to 45◦.
Finally the estimation of rotation is also prone to noise when the angle of a brick is close to 0
degrees (approximately between −5◦ and 5◦) due to the fact that noise pixels at the edge of the
brick might get classified as the longest vector, hence affecting the estimate of the rotation.

Figure 3.11: Illustration of the bricks found by the image processing. Furthermore the estimated
centre of the bricks are marked by a black dot, and the estimate rotations are illustrated by lines
pointing in the direction of the rotation. The colour of these lines furthermore indicates what
colour each brick has been categorized as.

Figure 3.11 shows the estimated centre and rotation of the bricks found from the binary images
shown in Figure 3.9.
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4 Robot control

The chosen robot as described in Section 2.1 is a Universal Robots UR5. The robot contains 6
degrees of freedom and is capable of lifting up to 5 kg and reaching up to 850 mm out.

4.1 Universal Robots programming
Universal Robots are programmed through the connected teach pendant including the graphical
PolyScope programming interface [7]. The robots can be programmed either visually by moving
the robot and setting waypoints manually or they can be programmed in the URScript program-
ming language [6]. Both methods can be typed in through the teach pendant and saved as a
program to be executed on the robot.

4.1.1 URScript commands
The URScript commands to be used in this project involves initialization of the robot position
by joint movement, moving the robot arm in the Cartesian coordinate system and opening and
closing of the gripper.
The joint movement command defined as ’movej’ can be used to specify desired joint angles of
the 6 robot arm joints, of which the robot will move to by a joint angle interpolation with the
desired velocity and acceleration.

Figure 4.1: Joint movement URScript function [6]

The joint movement is useful if a certain position is to be achieved in a specific configuration
(angular configuration). This allows the robot to be forced into a specific configuration where
the inverse kinematic used for linear movement would otherwise have forced the robot into a
different configuration.
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Chapter 4. Robot control 4.1. Universal Robots programming

For the linear movement the ’movel’ command can be used to specify a desired 3D position and
orientation of the tool with origo in the base frame. When calling the linear movement command
the robot will move to the specified position and orientation with linear interpolation why it is
important to take care of possible singularities.

Figure 4.2: Linear (Cartesian) movement URScript function [6]

According to the URScript reference manual [6] Universal Robots use a 6-dimensional vector
with floats to describe poses. In a pose, the first 3 coordinates is a position vector and the last 3
an axis-angle. The position elements defines the X,Y,Z coordinates in meters and the axis-angle
elements defines an angle of which the rotation of the tool frame is performed and the length
indicates the amount to turn. A further description is given in Section 4.2.

To be able to pick up the LEGO DUPLO bricks it should be possible to automate the opening
and closing of the gripper mounted to the robot, presented in section Section 2.2. Gripper control
can be performed using the ’set_tool_digital_out’ command where the output number and
signal level is specified, which is the simplest way to control an actuated gripper tool.

Figure 4.3: Gripper control URScript function [6]

A high signal (true) would close the gripper and a low signal (false) would open the gripper. The
gripper mounted on the UR5 robot used in this project can only supply a few millinewton of
pressure, why the gripper will automatically stop whenever any form of resistance is met, such
as when a brick has been grabbed.

4.1.2 Connecting to the robot over Ethernet
Movement to given waypoints or the execution of individual URScript commands can be connected
in a desired sequence by using the graphical PolyScope programming environment. Though
instead of using preprogrammed waypoints a computer running MATLAB should be used to
send commands to the robot.
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The robot comes equipped with both a USB host interface (for USB memory sticks) and an
Ethernet interface. To connect the robot to a PC for control, the Ethernet interface would have
to be used and the network card of the PC should be configured to be on the same subnet as
the robot. The IP address of the robot can be found in the ’About’ page on the teach pendant.
Configure the computer to be the gateway by making sure that both the computer IP and
gateway IP is the same in the network card configuration, preferably ending in "x.x.x.1". Replug
the Ethernet cable after configuring.
When the network card has been configured and the Ethernet cable has been replugged the
connection to the robot can be verified by pinging the IP address of the robot. Open a terminal
and write "ping x.x.x.x" where x.x.x.x should be replaced by the IP address of the robot. If
the robot does not respond to the ping requests the network has not been configured appropriately.

The actual MATLAB control of the robot over Ethernet is described in section Section 4.3.

4.1.3 Simulated control

As part of the Robot Vision course the ABB Robot Studio was presented as a possible simulation
environment in which ABB robots could be programmed with vision systems being included.
Unfortunately there are no similar simulation software for the Universal Robots which would
allow both the robot simulation and vision system integration together with MATLAB control.

One possible simulation environment that includes support for the Universal Robots arms is
RoboDK [5]. This software allows design of robot cells with several different high-end robot arm
brands including simulation of vision or laser-based sensor integration. Furthermore the software
allows direct connection to the chosen robot or export of the developed robot program to the
specific robot arm language. The actual programming of the robot arm within the simulation
environment is done in a Python type of language. Unfortunately the simulated vision images
can not be exported to MATLAB directly, why it would not be possible to simulate the actual
implementation as it would be with ABB Robot Studio.

Although no complete simulation environment supporting both MATLAB control and simulated
vision is available for the UR5, Universal Robots has released a virtual Linux machine called
URSim [8], identical to the operating system running on the PolyScope teach pendant. This
virtual machine allows URScript programs to be simulated on a PC and even virtual Ethernet
connections to be made to allow simulation and test of the PC communication interface and
MATLAB control.

4.1.4 Transferring a program over Ethernet

When a PolyScope program has been made, either within the simulation environment or on the
physical teach pendant, the program can be copied (or backed up) through a USB memory stick
or over Ethernet. To copy a file over Ethernet an SSH connection has to be used to transfer files
to/from the robot. For Windows users the program ’WinSCP’ can be used as SFTP client to
connect to the robot. Within WinSCP enter the IP address of the robot.
When asked about username and password enter ’root’ or ’ur’ as the username and ’easybot’ as
the password. The home would usually appear automatically when connected. All saved scripts
are stored within ’/home/ur/scripts’.
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4.2 Conversion of SO(4) transformation matrices
As mentioned in Section 2.3 it has been decided to describe all the frames contained within the
robot cell with SO(4) transformation matrices. It should be possible to give the robot arm target
as an SO(4) matrix why a conversion to the 6-dimensional UR pose is needed. The UR pose
vector is shown in (4.1).

pUR =
[
TUR

RUR

]T

=
[
x y z rx ry rz

]
(4.1)

An SO(4) transformation matrix transforming from the tool frame {T} to the base frame {B} is
characterized by the elements shown in (4.2).

B
T P =

[
R T
0 1

]
=


rxx rxy rxz x
ryx ryy ryz y
rzx rzy rzz z
0 0 0 1

 (4.2)

The translational part of the UR pose is identical to the translational part of the SO(4) matrix,
T . The conversion from the rotational part, composed of a common 3x3 rotation matrix, to the
axis-angle description requires a few steps.

First the rotation matrix is converted to a rotation angle, θ, and a rotation axis, AK [2].

θ = cos−1
(
rxx + ryy + rzz − 1

2

)
AK = 1

2 sin θ

rzy − ryz

rxz − rzx

ryx − rxy

 =

kx

ky

kz

 (4.3)

Thereafter the axis and angle is combined into a single 3-dimensional vector, by forming a vector
of the axis unit vector whose length is extended to reflect the rotation angle amount.

RUR = AKθ →

rx

ry

rz

 =

kxθ
kyθ
kzθ

 (4.4)

Converting back simply requires doing the opposite conversion. First the rotational vector from
the UR pose has to be converted into rotation axis and rotation angle.

θ = |RUR| AK = RUR

θ
(4.5)

An axis-angle rotation is performed by starting with a frame {B} coincident with a known
reference frame {A}. Frame {B} is rotated about the vector AK by an angle θ according to the
righthand rule. This yields the rotation matrix shown below where cθ = cos θ and sθ = sin θ

R =

 kxkx(1− cθ) + cθ kxky(1− cθ)− kzsθ kxkz(1− cθ) + kysθ
kxky(1− cθ) + kzsθ kyky(1− cθ) + cθ kykz(1− cθ)− kxsθ
kxkz(1− cθ)− kysθ kykz(1− cθ) + kxsθ kzkz(1− cθ) + cθ

 (4.6)

4.2.1 Configuring the tool center point
The tool center point is defined to be at the tip of the grippers when they are closed. The tool
center point location relative to the wrist frame has to be configured through the teach pendant.
For the used gripper shown in Figure 2.1, the TCP offset is configured to a z-offset of 213 mm.
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4.3 MATLAB interface

There are two approaches to control the robot arm over Ethernet [1]:

• URScript commands sent over TCP/IP port 30002 [6]

• TCP/IP socket connection to own local URScript

Both methods requires a TCP/IP socket to be opened and used to exchange commands and
values. Method 1 allows the user to execute all sort of URScript commands as explained in the
URScript manual [6]. Method 2 requires a local URScript to be developed and executed on the
PolyScope teach pendant which connects to a socket on the host computer from where it can
receive messages and react accordingly in a pre-programmed manner. To get knowledge of both
teach pendant programming and the MATLAB interface it is decided to use Method 2.

Method 2 consists of the development of a command parser that will parse the incoming messages
sent from MATLAB and execute movements and actions accordingly. When a movement has been
finished the script should furthermore send a status message back indicating that the movement
has finished. This allows the MATLAB script to be programmed to wait for a movement action
to finish before continuing with the next. At a bare minimum the local URScript should therefore
support movement commands, finish messages and opening and closing of the gripper.

As a special cooperable feature the Universal Robots supports a free-drive mode where the
operators interacts with the robot by moving it to a desired position simply by dragging the
tool by hand. Teach mode is the programmable version of free-drive and will allow the robot
to be moved around by hand in the same way as by pressing the free-drive button on the back
of the teach pendant, though the robot will not be able to follow movement commands at the
same time. To simplify the camera to robot calibration this teach mode would allow the operator
to move the robot to a calibration brick of which the image processing will later calculate the
position. Further details are described in Section 5.1. Enabling teach mode by calling the
URScript command ’teach_mode()’ should also be included in the local URScript.

If the robot position is moved by an operator, eg. in teach mode, it is necessary to know the new
pose of the robot. With the ’get_actual_tcp_pose()’ command it is possible to get the current
robot pose as the 6-dimensional vector which can be sent back to the host computer over the
TCP/IP socket.

Figure 4.4: URScript function to get current pose of TCP [6]

This concludes the necessary commands developed into the local URScript. To summarize the
supported commands are:
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MATLAB → Robot Robot → MATLAB

• Move to UR pose
• Open gripper
• Close gripper
• Request current pose
• Enable Teach mode
• Disable Teach mode

• Moving finished event
• Return current pose

Figure 4.5: Local URScript implementing the necessary features

The URScript implementing these features are shown in Figure 4.5. The marked ’Robot Program’
and ’Thread_1’ are both threads which run in parallel. ’Robot Program’ handles the arrival
of new messages from the host computer whereof ’Thread_1’ handles the command execution
based on the received messages. The script is attached as ’matlabcontrol.script’.

The MATLAB interface is implemented as a common ’tcpip’ object which opens a server on
the host PC for the robot to connect to. After the robot is connected to the socket the ’tcpip’
object can be used as a robot object and passed to the individual functions, eg. ’moverobot(...)’,
’OpenGripper(...)’ etc.

The MATLAB interface and all functions are simulated using the URSim virtual machine. Instead
of programming the robot to connect to the host PC, the simulated robot is programmed to
connect to a local IP address of the computer on the network interface shared with the virtual
machine, in this case ’192.168.174.1’.

All MATLAB files including the robot interface are located in the MATLAB folder.
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5 Integration

As a final step the image processing and robot control has to be combined in a single executable
MATLAB script to perform the stacking maneuver. The analysis and design of the stacking
algorithm is considered in the end of the chapter, resulting in a complete and integrated solution
that can be tested in the robot cell.

5.1 Calibration
The image processing results in pixel locations and rotations of the detected bricks. These
pixel locations have to be transformed into world coordinates to be integrated with the robot
control interface. This procedure is known as calibration and will be separated into two steps:
a camera calibration step to find the intrinsic parameters of the camera used and a camera to
robot calibration step to find the mapping between normalized coordinates in the camera frame
and world positions of the bricks in the base frame of the robot.

5.1.1 Camera calibration
Digital cameras captures the world with a CCD sensor or similar with a lens in front to focus
the light beams from the scene onto individual pixel locations. This way of capturing the world
with a lens can be modelled with a pin-hole camera model. When working with the pin-hole
camera model physical coordinates in the camera frame, xc, yc, zc, are projected into a normalized
2-dimensional coordinate space.

pn =
[

xc
zc

yc

zc
1
]T

=

xn

yn

1

 (5.1)

Based on tests it has been decided not to correct any distortion as the distortion factor at the
operating distance from which the camera will take the picture is less than 1%. Otherwise
distortion would have been applied to these normalized pin-hole coordinates. The normalized
pin-hole coordinates, xn, yn, are transformed into pixel coordinates, u, v using the intrinsic
parameters of the camera such as the focal length, principal point and scaling factors. These
parameters are contained within a camera calibration matrix, K, which has to be determined.uv

1

 = K

xn

yn

1

 =

ax 0 x0
0 ay y0
0 0 1


xn

yn

1

 (5.2)

A camera calibration toolbox made by the Jean-Yves Bouguet from Caltech [4] takes in a sequence
of images of a calibration checkerboard with black and white squares of known size. These
pictures are then used to calculate both the extrinsic locations of the camera and the intrinsic
camera parameters, due to the known physical dimensions of the squares.

The calibration checkerboard is placed in a height from the table matching the height of the
bricks. This allows the result of the calibration to be used as a measure of the distance from
camera to object, as described in the end of the section.
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Figure 5.1: Calibration images taken automatically from different viewing angles

The full camera calibration routine has been automated in the sense that the robot automatically
moves to 10 predefined locations and takes a picture. After collecting all images the camera
calibration toolbox is automatically used to extract the intrinsic and extrinsic parameters finally
stored in the ’Calib_Results.m’ file. The automated code is found within the MATLAB script
’Calibration_GeneralCameraCalibration.m’.
The output of the calibration toolbox, found within ’Calib_Results.m’ are the parameters needed
to form the camera calibration matrix, K. Hereafter the transformation shown in (5.2) can
just be reversed to go from pixel coordinates into physical camera frame coordinates. The only
requirement here is a known distance/height from the object to the camera centre, zc.xc

yc

zc

 = zcK
−1

uv
1

 (5.3)

Be aware that this distance is not the height to neither the camera glass or CCD sensor, but
rather a measurement of the distance to the pinhole model center.

From the camera camera calibration toolbox the extrinsic parameters, being the translation and
rotation of the calibration checkerboard compared to the camera frame, is also determined. As
the first image in the sequence of images used to calibrate the camera is taken from the position
where the robot will be programmed to take all pictures when detecting bricks, the z-element
from the determined extrinsic translation, can be used to define the height from camera center
to object. This allows captured brick locations, given in pixel coordinates, to be transformed
into camera frame world coordinates, CPbrick. This transformation is implemented as part of the
function in the script ’PixelToWorldCoordinate.m’.

5.1.2 Camera to robot calibration
For the robot to be able to pick up any of the detected bricks, whose location is now known in
world coordinates within the camera frame, it is necessary to convert these coordinates into the
base frame of the robot. This requires a transformation between the tool frame and the camera
frame to be found.

Assuming that the rotation of the camera is aligned with the both the base frame and tool frame,
except for a 90 degree rotation around the z-axis as shown in Figure 2.2, the transformation will
only require the determination of a translational offset. This is a reasonable assumption as the
tool frame has been programmed to always point downwards when operating and it has been
programmed to have 0-rotation around the z-axis when taking pictures of the bricks. As long as
the camera is installed carefully, such that the horizontal and vertical alignment matches the
tool frame, it is not necessary to determine the rotational part of the transformation.
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The complete transformation, T
CP, from camera frame to tool frame, is hereby described by an

unknown translational offset, xo, yo, zo, and a rotation around the z-axis by 90 degree.

T
CP =


0 −1 0 xo

1 0 0 yo

0 0 1 zo

0 0 0 1

 (5.4)

The camera to robot calibration is performed by inserting a LEGO brick into the gripper of the
robot and the teach mode of the Universal Robot is enabled. This allows the position of the
gripper to be moved on top of a calibration brick.

Figure 5.2: Calibration of camera to robot offset

When the gripper has been placed on top of the calibration brick the tool frame position is saved
as B

T Pcal. Then the calibration brick is held firmly while the robot arm moves to the image
taking position, B

T Pimage, and take a picture of the brick. This picture is processed by the image
processing resulting in a detected brick location which is transformed into world coordinates
within the camera frame, CPbrick.

The detected brick location within the camera frame is transformed into the base frame by
applying the yet unknown transformation, T

CP, from the camera frame to the tool frame together
with the transformation from the tool frame to the base frame in the image taking position. The
resulting vector should be equal to calibration position to which the robot was moved manually,
that is the translational part of B

T Pcal which is extracted using the homogeneous zero-vector,
~0 =

[
0 0 0 1

]T
.

B
T Pimage

T
CP CPbrick = B

T Pcal ~0 (5.5)

The known rotational part of the otherwise unknown transformation to be calibrated, T
CP

is included as part of the ’PixelToWorldCoordinate.m’ script and is applied after the pixel
coordinates have been transformed into world coordinates in the camera frame. This allows the
transformation, T

CP, to be split in a known and unknown part, of which the unknown part is
denoted as, T

C′P, and the known rotational part gets included in the calculated brick position in
the camera frame now denoted C′Pbrick.

T
CP = T

C′P


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 C′Pbrick =


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 CPbrick (5.6)
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Using the ’PixelToWorldCoordinate.m’ script, which now aligns the rotation of the camera and
tool frame in the intermediate frame {C ′}, can then be used to find the translational offset
between the two frames, describing the unknown transformation T

C′P, such that the following
equation is fulfilled.

B
T Pcal

−1 B
T Pimage

T
C′P C′Pbrick = ~0 (5.7)

This translational offset is stored as ’CameraToRobotOffset’ in the ’CameraToRobotOffset.mat’
file and is applied to the pixel coordinates of every detected brick to determine the brick location
in the base frame as found from B

T Pimage
T
C′P C′Pbrick. Furthermore the z-location of the tool

frame in the calibration position is extracted and subtracted one brick height, to be used as a
measure of the placement height. This is stored as ’BrickPlaceZ’ in the ’CameraToRobotOff-
set.mat’ file.

The implementation of the camera to robot calibration is found within the MATLAB script
’Calibration_CameraToRobot.m’.

5.2 Alignment and gripping issues

In the first tries of the system with the original gripper installed on the robot arm, there were
some problems about bricks not being oriented correctly when picked up by the gripper. This
error seemed to accumulate while the robot were stacking the bricks, why the robot could not
successfully stack all bricks.

Figure 5.3: Gripper with 3D printed corner-gripper gloves

To solve this issue a fixation tool was 3D modelled, printed, and duct-taped onto the installed
gripper. This is shown in Figure 5.3.
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5.3 Pickup and stacking order
To save time each ordered figure is stacked completely before being placed aside. This means each
figure is stacked from top to bottom by picking up the top brick first. The grippers of the robot will
always be holding the top brick and the other bricks will be stacked below this top brick one by one.

It has been decided to stack the bricks in this manner to both save time and also to reduce the
likelihood of placing errors. As a stacking or placing plate was not installed on the chosen robot,
capable of keeping the position of a placed brick fixed, small placing errors are likely to occur if
a brick is put down before a new brick is put on top.

A brick to be picked up is chosen as the first available brick of the necessary color in the brick
array from the image processing. When a brick has been picked up it is removed from the
brick array hence indicating that it is no longer available. As the bricks in the brick array are
numbered and ordered from the top of the image and down, this results in a pickup order where
the top-most bricks are used first.

No further optimization has been done of the pickup order, though a likely optimization for future
development would be to pick the next brick as the one closest to the current robot position.

5.4 Test and results
As no white bricks were available and the number of different bricks in general were limited due
to multiple groups working on the project, it was not possible to implement the actual stacking
of the ordered Simpson figures. Instead it has been chosen to stack the bricks in ordered colors:
red, green, blue, yellow, orange. If a color is not available it will be skipped and the next possible
is chosen. The stacked result is shown in Figure 5.4.

Figure 5.4: Final result stacking bricks in colored order

The final code used in the video demonstration, of which results are mentioned in this chapter,
is found within the MATLAB script ’RobotStacker_Final.m’. As it can be seen in the video the
system manages to stack the bricks quite well.
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